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ABSTRACT

This article describes an electrosynthetic method for vicinal trifluoromethylchlorosulfonylation of alkenes using the readily avail-
able copper salt [Cu(MeCN),]PF¢ and triethylamine, without the need for elaborate ligands. This protocol enables efficient and
selective addition of CF; and SO,Cl groups across a wide range of unactivated alkenes with broad functional group tolerance,

including pyrrole, furan, thiophene, thioethyl, and silyl substituents. The sulfonyl chloride products can be readily transformed

into sulfonamides, sulfonates, sulfonyl fluorides, and thiosulfonates. Mechanistic studies provide evidence in support of an elec-

trochemically driven, Cu-mediated SO,Cl radical transfer mechanism.

1 | Introduction

Vicinal difunctionalization of alkenes represents a powerful and
atom-economical approach in modern organic synthesis, enabling
the simultaneous addition of two functional groups across a
carbon-carbon double bond. This strategy offers an efficient
means of building molecular complexity from simple olefins
and has found widespread utility in the synthesis of pharmaceut-
icals, agrochemicals, and complex natural products [1-13].

Among functional groups of high synthetic and biological rele-
vance, the trifluoromethyl (—CF;) and sulfonyl (—SO,—) motifs
stand out for their unique properties. The CF; group plays a crit-
ical role in medicinal chemistry as it can enhance the metabolic
stability, lipophilicity, and bioavailability of drug candidates
[14-17]. Meanwhile, sulfonyl-containing groups, including sul-
fones, sulfonamides, sulfonates, and sulfonyl fluorides [18], are
prevalent in bioactive molecules and also serve as versatile inter-
mediates in organic synthesis (Figure 1a) [19-24]. The derivati-
zation of sulfonyl chlorides (—SO,Cl) is one of the most
convenient methods for accessing sulfonyl-containing functional

groups [25]. However, despite their individual importance, the
direct and selective installation of both CF; and SO,Cl groups
onto alkenes in a single transformation remains a synthetic
challenge. This difficulty arises from the inherent instability of
sulfonyl chloride precursors and their tendency toward uncon-
trolled reactivity. In this context, trifluoromethanesulfonyl chlo-
ride (CF3SO,Cl) [26] has emerged as an attractive bifunctional
reagent capable of supplying both CF; and SO,Cl radicals.
This dual reactivity presents opportunities for achieving radical-
mediated alkene difunctionalization in a single, operationally
simple step.

In 2015, Reiser and coworkers reported a photochemical trifluor-
omethylchlorosulfonylation of alkenes using a [Cu(dap),]Cl
(dap = 2,9-bis(para-anisyl)-1,10-phenanthroline) as catalyst [27].
They proposed a novel dual mechanistic role for the [Cu(dap),]
Cl, wherein the Cu complex acts as both a photocatalyst
for CF5SO,Cl reduction and as a Cu center that actively partic-
ipates in C—S bond formation (Figure 1b). Photoexcited Cu(I)
complex [Cu(dap),]Cl* undergoes single-electron transfer to
reduce CF3SO,Cl, generating a CF; radical and a Cu-SO,Cl
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FIGURE 1 | (a) Synthetic versatility of the SO,Cl moiety enabling access to diverse functional groups, along with representative drug molecules

bearing sulfone (—SO,—) and trifluoromethyl (—CF;) motifs. (b) Previously reported photoredox-enabled alkene trifluoromethylchlorosulfonylation
using Cu photocatalysis with 1,10-phenanthroline ligands. (c) Our electrochemical strategy for vicinal trifluoromethylchlorosulfonylation of alkenes

using NEt; as a ligand and CF5SO,Cl as a bifunctional reagent.

intermediate. The CF; radical adds to the alkene, and the result-
ing carbon-centered radical is proposed to react directly with
Cu-SO,Cl to yield the difunctionalized product. In addition to
its mechanistic novelty, this transformation enabled trifluorome-
thylchlorosulfonylation of a relatively broad array of alkene sub-
strates. However, some limitations remained; for instance, the
authors reported that certain Lewis basic groups (e.g., the furan
derivative in Figure 1b) divert the reaction pathway toward tri-
fluoromethylchlorination rather than the desired trifluorome-
thylchlorosulfonylation. Later, the same group also reported

that Cu with 2,9-dimethyl-1,10-phenanthroline (dmp) ligand, a
phenanthroline with different substituents from dap, could per-
form the same transformation as the [Cu(dap),]Cl catalyst [28].

In a complementary approach, Xiao and coworkers developed a
dual Ir/Cu photoredox system using a bench-stable trifluorome-
thylsulfonyl pyridinium (TFSP) salt as a dual-source reagent for
CF; and SO, (Figure 1b). Upon visible-light excitation, the Ir(III)
catalyst undergoes oxidative quenching by TFSP to generate
a trifluoromethylsulfonyl radical, which undergoes scission to
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release a CF; radical. After alkene addition, the resulting alkyl
radical undergoes in situ SO, reinsertion to form a persistent sul-
fonyl radical intermediate that is trapped by a chloride-ligated
Cu(II) complex (with KCl as the chloride source), leading to a
Cu(Ill) intermediate. Subsequent reductive elimination and
fluoride—chloride exchange then yield the sulfonyl fluoride
product. Meanwhile, single-electron transfer between Ir(IV)
and Cu(I) regenerates the active catalytic species. This method
showed good functional group tolerance and wide access to
SO,F-containing molecules. Although this method demonstrates
the potential of TFSP in radical-mediated difunctionalization, it
has several limitations. First, the SO,Cl intermediate was not
isolated or directly observed, and the reaction only furnished
sulfonyl fluoride products. Second, the Cu catalytic cycle
required suitable 1,10-phenanthroline ligands to promote effi-
cient Cu catalysis.

Inspired by these literature reports as well as our own previous
findings on trifluoromethylchlorination [29], we have developed
a complementary Cu-catalyzed electrochemical trifluoromethyl
chlorosulfonylation of alkenes using CF3SO,Cl as a bifunctional
reagent (Figure 1c). Like photoredox catalysis, electrochemical
methods allow precise control over redox events and facilitate
paired redox processes; however, no photoexcitation of metal
complexes is required under electrochemical conditions, which
offers opportunities to broaden the ligand choice [30-38]. We
envisioned that cathodic reduction could activate CF;SO,Cl to
generate CF; radicals while simultaneously exploiting the redox
flexibility of Cu(I)/Cu(II) at the anode to promote SO,Cl transfer.
We further hypothesized that without the need for photoactive
Cu complexes, the Cu-SO,Cl species might be better stabilized,
leading to improved selectivity toward trifluoromethyl chlorosul-
fonylation for a wide scope of substrates.

Consistent with these proposals, we report herein that the use of
commercially available [Cu(MeCN),]PF in the presence of trie-
thylamine (Et;N) enables efficient and highly selective trifluor-
omethylchlorosulfonylation of alkenes. The reaction proceeds via
electrochemical reduction of CF3;SO,Cl, producing CF; radical
and SO,CI". We propose that the CF; radical undergoes addition
to the alkene, while the Cu catalyst traps SO,Cl™ and then medi-
ates transfer of the SO,Cl moiety, likely via Cu(I)/Cu(II) anodic
oxidation. This electrochemical system offers a broad substrate
scope (for example, the furan derivative that was unsuccessful
using Reiser’s method furnished 60% yield of the desired product)
and uses a simple and low-cost Et;N ligand. Mechanistic studies
provide experimental evidence, including isolation of the alkene
chlorosulfonylation product, supporting SO,Cl transfer from a
Cu-SO,Cl intermediate under these electrochemical conditions.
Additionally, selected products could be further transformed into
sulfonamides, sulfones, and other functionalized derivatives,
highlighting the synthetic versatility of this platform.

2 | Results and Discussion
2.1 | Reaction Development

We initiated this study using 4-phenyl-1-butene (1) as a
model substrate to develop an electrochemical trifluoromethyl

chlorosulfonylation protocol (Table 1). The reaction was per-
formed in MeCN with LiClO, as the supporting electrolyte,
Et;N as an additive, and [Cu(MeCN),]PF; as the Cu catalyst
under constant voltage electrolysis (Figure S1). A voltage of
2.2V was initially chosen based on the reduction peak potential
of CF3S0,Cl (E=-1.4 V vs Ag/Ag") and oxidation peak potential
of Cu(I) catalyst (E 0.9 V) as shown in Figure S2. To further val-
idate these parameters, we measured the electrode potentials
under the standard reaction conditions using a three-electrode
setup with Ag/Ag* as the reference electrode. The anodic and
cathodic potentials were determined to be +1.24 and -1.0V,
respectively (Figure S3), which are in reasonable agreement with
potentials for CF3SO,Cl reduction and Cu(I) oxidation. Control
experiments established the essential roles of both electricity and
the Cu catalyst. No product formation was observed in the
absence of electrolysis (entry 1). Similarly, in the absence of
the Cu catalyst (entry 3), the reaction yielded 1a (the chlorotri-
fluoromethylated product) in preference to 1b (the trifluorome-
thylchlorosulfonylated product), with 5:1 selectivity. Lowering
the Cu(I) catalyst loading to 1 mol% slowed the reaction (36%
yield for 1b and recovered 1) but maintained the good selectivity
toward 1b over 1a (6:1) (entry 13). This result highlights the cru-
cial role of Cu in directing the reaction toward the target product
1b. Furthermore, when Cu(OTf), was used instead of
[Cu(MeCN),]PFs (entry 7), both yield and selectivity dropped sig-
nificantly (5% 1b, 3:1 selectivity). This observation is consistent
with our proposed mechanism in Figure 1c, in which Cu(I)
undergoes anodic oxidation to Cu(II), which then participates
in the delivery of SO,Cl radicals. Upon applying a constant volt-
age of 2.2 V for 24 h, the desired trifluoromethylchlorosulfony-
lated product 1b was obtained in 40% yield, along with 6%
of the trifluoromethylchlorination side product 1la (Table 1,
entry 2). Interestingly, the omission of Et;N completely shut
down the reaction and led to full recovery of 1 (entry 4), under-
scoring its indispensable role, likely as both a sacrificial reductant
[39, 40] and a weak binding ligand for Cu, which will be dis-
cussed in more detail in the mechanism section below [41].
Increasing the amount of Et;N to 2 equiv (entry 5) improved
the yield of 1b to 57% while suppressing the formation of 1a
(1:9 selectivity). However, further increasing Et;N to 3 equiv
(entry 6) resulted in a decrease in both yield and selectivity.

Next, we varied the applied voltage. Increasing the potential from
2.2 to 2.5V resulted in a significant increase in yield and selec-
tivity, affording 1b in 92% yield with a 1:15 selectivity over 1a
(entry 8). Further increases in voltage led to diminished perfor-
mance: 3.0 V (entry 9) and 2.7 V (entry 10) both resulted in lower
yields and poorer selectivity. We also evaluated the impact of
ligand environment on Cu catalysis. When [Cu(dap),]Cl was
used instead of [Cu(MeCN),|PFs (entry 11), the reaction pro-
duced 1b in good yield (72%), but with a significant increase
in the formation of 1a (27%, 1:3 selectivity). This result is consis-
tent with strongly coordinating ligands, such as dap, altering the
steric and electronic environment of the Cu center, thereby
reducing the selectivity of the radical transfer step.

We also tested our chemistry using a commercial IKA ElectraSyn
setup under either a constant voltage of 2.5 V or a constant cur-
rent of 5 mA (entries 12 and 14). During the constant current
experiment, the cell voltage gradually increased to 3.7V over
24h. In both cases, the reaction proceeded reproducibly;
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TABLE 1 | Reaction Discovery and Development.

cl S0O,CI

Catalyst
©/\/\ ZEE CF3 CF3
1 CF3S0,CI (6 equiv), Et3N (2 equiv) ; 15
a

LiCIO, (0.125 M), MeCN (-)C/(-)C

Voltage(V,)
Et;N Time [CF5S0,Cl] 19F-NMR vyield Selectivity
Entry Vp (equiv) Catalyst (mol%) (h) (equiv) (%) (1a + 1b) (1a:1b)
1 N/A 1 [(CH5CN),Cu]PF4: 20 24 6 <1 N/A
2 2.2 1 [(CH5CN),Cu]PFs: 20 24 6 06 + 40 17
3 2.2 1 N/A 24 6 51 + 11 5:1
4 2.2 N/A [(CH,CN),Cu]PFs: 20 24 6 02 + 02 11
5 2.2 2 [(CH,CN),Cu]PF: 20 24 6 06 + 57 1:9
6 2.2 3 [(CH,CN),Cu]PFg: 20 24 6 07 + 41 17
7 2.2 2 Cu(OTf),: 20 24 6 13 + 05 31
8 2.5 2 [(CH,CN),Cu]PFg: 20 24 6 06 + 92 1:15
9 3 2 [(CH,CN),Cu]PFg: 20 20 6 09 + 60 1:7
10 2.7 2 [(CH,CN),Cu]PFg: 20 24 6 08 + 85 1:11
11 2.5 2 Cu(dap),Cl: 1 24 6 27 + 72 1:3
12° 2.5 2 [(CH,CN),Cu]PFg: 20 24 6 21 + 72 1:3
13 2.5 2 [(CH5CN),Cu]PFs: 1 24 6 06 + 36 1:6
14° 5 mA 2 [(CH;CN),Cu]PFs: 20 24 6 09 + 63 17

Reactions were performed under an argon atmosphere using 0.25 mmol of 1 (1 equiv) in 4 mL of acetonitrile. Yields were determined by °F NMR of the crude

reaction mixture using hexafluorobenzene as an internal standard.
Starting material recovered.
PElectraSyn 2.0 was used.

however, the selectivity toward the desired chlorosulfonylated
product 1b was slightly lower than in our homebuilt cell. The
measured faradaic efficiency is 17.8% under optimal conditions
(Supporting Information).

Although the model substrate 1 afforded the sulfonyl chloride
product 1b in 92% '°F NMR yield, the isolated yield was
significantly lower (56%), due to the high reactivity of the
sulfonyl chloride functional group. To facilitate product isolation
and characterization, we in situ converted 1b to the more
stable sulfonamide derivative, 1c, by adding benzylamine to
the crude mixture after electrolysis [42]. This one-pot sequence
yielded 1c in a 48% isolated yield, which is comparable to
the outcome from the reaction between isolated 1b and benzyl
amine (Figure S4). Throughout Figure 2, we report the '°F
NMR vyields for sulfonyl chloride products (—SO,X, X =Cl)
and isolated yields for the corresponding sulfonamides
(—S0,X, X = NHBn).

To demonstrate the generality of this protocol, we evaluated a
broad array of alkenes under the optimized conditions from
Table 1. Figure 2 shows that a wide range of nonconjugated ter-
minal alkenes are well tolerated. Allylbenzenes bearing a
methoxy group or bromo group on the arene (2b-4b) gave high
yields (98%, 72%, and 85%, respectively). 1-Allylnaphthalene, fea-
turing an electron-rich aromatic system, also underwent efficient
reaction, affording product 5b in 60% yield. In all cases, the cor-
responding sulfonamide derivatives were isolated in moderate to

good yields, ranging from 33% to 54%, following in situ derivati-
zation (2c¢-5c).

Functionalized alkenes such as ether 6 also afforded a good yield
(6b, 54%) with the corresponding sulfonamide 6c isolated in 69%
yield. Simple terminal alkenes, such as 7, yielded the product 7b
in 98% yield, along with the corresponding sulfonamide 7c in 44%
yield. Alkyl ester- and bromo-groups (8 and 9) were also compat-
ible, affording 92% and 62% yields, respectively. The sulfona-
mides 8c and 9c were isolated in yields of 56% and 50%.
Substrates containing silyl groups also underwent smooth
difunctionalization (10b, 66%). Notably, bisallylamine (11) and
diethyl diallylmalonate (12) underwent cascade radical cycliza-
tion to yield five-membered ring products (11b, 12b) in 72%
and 70% yields, and corresponding sulfonamide 11c and 12c
in 34% and 51% yields, respectively, confirming the radical nature
of the reaction.

Next, we examined a series of aryl thioethers with varying
electronic profiles (13-17), which are prone to overoxidation
due to low onset oxidation potential (E =0.79-1.15V vs Ag/Ag")
[29]. Indeed, sulfoxide byproducts were isolated for 16, and
no product was detected for 13 and 14 due to the oxidative
decomposition under the optimized conditions (Figure S5).
However, switching to alternating current (AC) electrolysis,
which allows reversible oxidation and reduction of
thioethers [29], mitigated this issue and restored product
selectivity. Aryl thioethers with electron-donating (Me, iPr)
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FIGURE 2 | Substrate scope for Cu-catalyzed electrochemical trifluoromethylchlorosulfonylation of alkenes. Reactions were performed on a 0.25

mmol scale. b. Yields were determined by '°F NMR of the crude reaction mixture using hexafluorobenzene as an internal standard. The numbers in the

parentheses are isolated yields. c. Isolated yields of the corresponding sulfonamide products are reported. *Reactions conducted under alternating
current (AC) electrolysis conditions: 2.0 V, 10 Hz. "Reactions performed at 2.7 V. *Reactions performed at 2.0 V. ®This product underwent hydrolysis

and lost the acetyl group during the sulfonamidation step.

and electron-withdrawing substituents (F, Br, CF3) at various
positions afforded the corresponding sulfonyl chloride products
(13b-17b) in moderate yields (36%-65%).

Furthermore, cyclic alkenes such as 18 afford products 18b and
18c in 50% and 25% yield, respectively. 18c was isolated as a sin-
gle diastereomer, in contrast to the previously reported photoca-
talytic reaction, which produced a diastereomeric mixture in a
3:2 ratio [27]. Heteroarene-containing alkenes such as tosyl-
protected pyrrole (19), furan and thiophene derivatives (21, 22)
proceeded smoothly (19b 67%, 21b 60%, and 22b 57% respec-
tively), while phthalimide (20) delivered the product (20b) in

an excellent yield of 98%. The corresponding sulfonamide
derivatives 19c-22c were isolated in moderate to good yield
(-33%-47%). Note that some of these compounds were not toler-
ated by the previous photocatalytic protocol (Figure S6).

Finally, we applied our protocol to drug-derived alkenes 23-26.
All substrates underwent smooth trifluoromethyl chlorosulfony-
lation, affording the difunctionalized products 23b-26b in
yields of 53%-70%. Subsequent sulfonamide derivatization also
proceeded efficiently, delivering the corresponding products
in -50% isolated yields, except 25c, which lost an acetyl group
due to hydrolysis during the sulfonamidation step.
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There were a few unsuccessful substrates. For example, pyridine-
derived alkene 27 failed to undergo the desired reaction, possibly
due to its coordination to the Cu ions [43, 44] or the formation of
an electrochemically inactive pyridinium adduct with CF5SO,Cl
[45]. 1,1-Disubstituted alkenes selectively afforded chlorotrifluor-
omethylated product 28. In addition, styrene derivatives failed to
undergo clean difunctionalization, instead yielding mixtures of
chlorotrifluoromethylated products (29, 31, and 32) and trifluor-
omethylsulfonated products (30, 33, and 34). The observed diver-
gence likely originates from the increased stability of benzylic
radical intermediates formed after the initial radical addition
of either CFze or CF3SO,e. These intermediates can undergo
chlorine atom transfer to yield either chlorotrifluoromethylation
or chlorotrifluorosulfonation products. Notably, the latter may
also undergo f-elimination, driven by the acidic a-proton adja-
cent to the sulfonyl group, leading to the formation of conjugated
vinyl triflates. The n-system of styrenes may also disfavor efficient
SO,Cl transfer, thereby contributing to the diminished selectivity
and divergence in product outcomes. We also found that styrene
derivatives were prone to over-oxidation at 2.5V, leading to
substrate decomposition. To mitigate this issue, the reactions
were conducted at a lower potential (2.0 V), which improved sub-
strate stability but maintained the divergent product distribution.
These observations are in line with literature reports [28, 45, 46],
which describe similar Cu-catalyzed chlorotrifluoromethylation
and vinyl triflate formation from styrene derivatives.

Sulfonyl chlorides have long served as versatile electrophiles in
organic synthesis [25, 47], as they undergo rapid and selective
coupling with a wide variety of nucleophiles. To showcase
the synthetic utility and diversification potential of the trifluor-
omethylchlorosulfonylated products, we subjected the isolated
compound 1b to a series of nucleophiles (Figure 3). These trans-
formations proceeded efficiently, affording structurally diverse
sulfonamide (1c-1h), sulfonate (1i-1j), thiosulfonate (1k), and
sulfonyl fluoride (11) products in good to excellent yields.
Notably, medicinally relevant amines, including derivatives from
paroxetine and estrone, reacted to afford 1h and 1j in 86% and

S0,CI

84% isolated yield, respectively, further demonstrating the appli-
cability of this protocol for late-stage functionalization. Together,
these results highlight the broad nucleophile compatibility and
downstream utility of the electrochemically generated trifluoro-
methylchlorosulfonylated products, providing access to a wide
array of sulfone-containing motifs from a single, operationally
simple starting point.

2.2 | Mechanistic Study

To interrogate the underlying mechanism of the electrochemical
trifluoromethylchlorosulfonylation, we considered two plausible
pathways based on literature precedents (Figure 4a). In Pathway
1, CF5S0,Cl undergoes cathodic reduction to generate CF;e
along with SO, and Cl™. The CF;« adds to the alkene, forming
a carbon-centered radical intermediate, which then undergoes
SO, insertion to afford a sulfonyl radical. Subsequent chlorine
atom transfer from a Cu(II)-Cl species, generated at the anode,
delivers the final product. Pathway 2 also begins with the electro-
generation of CFze, which then adds to the alkene. However,
instead of SO, shuttling through the solution, Cu(I) reacts with
CF5S0,Cl to generate a Cu(II)-SO,Cl species, which then trans-
fers SO,CI to the alkyl radical, resulting in the formation of the
final difunctionalization product. This mechanism is consistent
with Reiser’s recent proposal of Cu-mediated SO,Cl transfer [27].

To probe the operative mechanism, we performed a series of con-
trol experiments as follows. First, 10 equiv of 2,2,6,6-tetramethyl-
piperidinyloxy (TEMPO) was added as a radical scavenger.
Under the standard conditions, this resulted in the complete sup-
pression of the desired reaction and 65% TEMPO-CF; adduct
(Figure 4b and S7). This result is consistent with the generation
of CF; radicals being the initiation step shared by both pathways.
Under the standard reaction conditions, the formation of SO,
gas was confirmed via the decolorization of permanganate
stain (Figure S8). To probe the relevance of SO, shuttling in
the reaction, we tested the effect of adding additional SO, to

Further functionalization SO,
CFs CFs3
R
1b

_NHBn FaC

_Boc
N
N
ph/\/\/cF3 Ph s

1¢.100% (60% ) 1d.100% (57% )

! o o

‘ 2 CF

! Ph S< o> 8

| \/j/ ,\OAO o

: Ph s”

1 FsC @\ 0, \©
F
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1h. 100% (86%) 1i. 100% (82%)
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FIGURE 3 | Late-stage functionalization and synthetic utility of trifluoromethylchlorosulfonylated products. Reactions were performed on a

0.125 mmol scale. Yields were determined by *°F NMR analysis of the crude reaction mixture using hexafluorobenzene as the internal standard.

Isolated yields are shown in parentheses.
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FIGURE4 | (a)Proposed mechanistic pathways: Pathway 1 involves CF; radical addition followed by SO, insertion and Cu(II)-mediated Cl transfer;

Pathway 2 involves Cu-mediated SO,CI radical transfer. (b) Radical trapping experiment using TEMPO. (c) Control experiments with external SO,

sources. (d) Control experiments with different ligands. (e) Electrochemical titration of Et;N using [Cu(MeCN),|PFs: (top) Cyclic voltammograms
of 0.25mmol Et;N in 4 mL MeCN after adding 0.1-1 equiv of [Cu(MeCN),]PFs. The anodic waves at-1V correspond to the oxidation of free
Et;N. (bottom) A plot of the anodic peak currents at-1 V versus the molar ratio of [Cu(MeCN),]PFs and Et;N (ncym/Neesn). Experiments were con-
ducted in 0.125 M LiClO,/MeCN using a glassy carbon working electrode at a scan rate of 1 V/s. (f) "H NMR and mass spectrometric evidence for
chlorosulfonylation side product (1b’): blue trace shows the "H NMR spectrum for a mixture of 1b and 1b’ isolated from the reaction mixture; green and
red traces are isolated spectra of pure 1b and 1b’, respectively. All yields reported were determined by '’F NMR using hexafluorobenzene as an internal

standard; isolated yields are reported where noted.

the reaction mixture, either as gaseous SO, (g) or as bench-stable
DABCO-2SO, (Figure 4c). Both additives led to significantly
reduced product yields, showing that higher concentrations of
free SO, inhibit product formation. This observation suggests
against Pathway 1.

Given the known ligand sensitivity in Cu-mediated radical trans-
fer reactions [27, 28, 48], we next examined the effect of ligands
on the efficiency and selectivity of our electrochemical protocol
(Figure 4d). Strongly coordinating ligands such as Xantphos [49]
and bathophenanthroline [25] significantly eroded the 1la:1b
selectivity, despite high mass balance (entries 3,4). The sterically

hindered dap ligand shows improved selectivity toward 1b
(entry 2), while simple Cu salts, such as CuCl, provided high
selectivity toward 1b (entry 5). The adverse effect of the strong,
saturated coordination environment around Cu on reaction
selectivity is consistent with the proposed Cu-mediated SO,Cl
group transfer mechanism in Pathway 2.

The finding above led us to consider a possible role of Et;N
as a weak ligand for Cu(I). To investigate the coordination chem-
istry between Et;N and [Cu(MeCN),]PF4s, we performed an
electrochemical titration experiment. Progressive addition of
[Cu(MeCN),|PF, resulted in a marked decrease in the Et;N
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oxidation peak at-1.0V, which disappeared entirely after the
addition of one equivalent of [Cu(MeCN),|PFs (Figure 4e).
This result suggests that Et;N and Cu(I) undergo a 1:1 stoichio-
metric reaction to form a Cu(I)-Et;N complex [41], which retains
coordination sites for SO,CI to bind the Cu center and subse-
quently participate in SO,Cl group transfer.

Additional evidence supporting Pathway 2 was obtained through
mass spectrometric analysis (Figure S9) and 'H NMR characteri-
zation of the product mixture (Figure 4f). Alongside the signal
from the desired product 1b, two additional mass signals at
m/z=194.99 and 131.06 were detected by gas chromatography—
mass spectrometry (GC-MS), corresponding to two fragments
from the chlorosulfonylation product of 1 (i.e., [Ib’—CI]* and
[1b’—SO,CI]™"). Additionally, a pair of characteristic vinyl proton
peaks at 8 6.38 (d, J=1.9 Hz, 1H) and 5.77 (q, J=1.5 Hz, 1H) [50]
was observed in the "H NMR spectrum of an aliquot collected dur-
ing chromatographic separation of the reaction mixture, further
suggesting the presence of 1b’ as a minor byproduct.

Although isolating 1b’ proved challenging, post-reaction deriva-
tization with benzylamine enabled the isolation and confirma-
tion of its sulfonamidation product 1f, albeit in a low yield
(<4%). Interestingly, the addition of benzylamine to the reaction
unexpectedly promoted the chlorosulfonylation pathway, yield-
ing isolable 1b’ (its 'H NMR spectrum is provided in the bottom
panel of Figure 4f). Comparison of the *H NMR spectra con-
firmed the chlorosulfonylation product identity. The presence
of the sulfonylchlorinated product 1b’ is evidence that the
SO,Cl moiety is transferred intact as a radical via a Cu-SO,Cl
species during the reaction, with the amine ligand playing a crit-
ical role. The Cu-SO,Cl species could be formed via the reaction
of Cu(I), Et;N, and CF5;SO,Cl. Mixing these components led to
the appearance of a Cu-CF; signal near -28 ppm [51, 52] in the
F NMR spectrum (Figures S10-S13). Based on mass balance
considerations, the concomitant formation of a Cu-SO,Cl species
under these conditions is likely. However, we have not yet
obtained direct evidence for its presence.

Taken together, these mechanistic studies support Pathway 2,
which involves the addition of a CF; radical to an alkene fol-
lowed by Cu-mediated transfer of an SO,Cl radical, facilitated
by weakly bound amine ligands. We also note that, in the absence
of copper, partial selectivity for 1b was still observed (Table 1,
Entry 3); a likely noncatalyzed pathway accounting for this out-
come is discussed in Figure S14.

3 | Conclusions

In conclusion, this report describes the development of a selective
electrochemical trifluoromethylchlorosulfonylation of unacti-
vated alkenes using CF3;SO,Cl and Cu catalysis. This method
uses a simple Et;N ligand and leverages the redox activity of
Cu(I)/Cu(Il) to mediate SO,CI transfer, a mechanistic feature
consistent with Reiser’s previous work and our own control
experiments, including analysis of the key chlorosulfonylation
side products. The broad substrate scope, encompassing alkyl,
aryl, heteroaryl, and functionalized alkenes, underscores the
transformation’s versatility. Moreover, the resultant sulfonyl

chlorides serve as valuable intermediates for downstream deriv-
atization into a variety of sulfone-containing motifs of medicinal
relevance. Overall, this work establishes a synthetically practical
electrochemical strategy that is complementary to the previous
photocatalytic methods for the difunctionalization of alkenes
and also opens new avenues for electrosynthesizing the sulfony-
lated compounds via Cu-mediated SO,Cl transfer.

4 | Materials and Methods
4.1 | General Information

All chemicals and reagents were obtained from commercial ven-
dors and used without further purification. The CF;SO,Cl
reagent was stored in a glove box freezer at —20°C, and fresh ali-
quots were removed from the glove box and added immediately
to the reaction. All reactions were carried out in oven-dried glass-
ware under a positive pressure of argon using Schlenk line tech-
niques. Analytical thin-layer chromatography (TLC) was
routinely used to monitor the progress of the reactions. TLC
was performed using precoated glass plates with 230-400 mesh
silica gel impregnated with a fluorescent indicator (250 nm).
Visualization was accomplished using UV light, potassium per-
manganate. Flash chromatography was performed on silica gel
flash chromatography columns, Teledyne Isco Combi Flash Rf
system utilizing normal phase precolumn cartridges and gold
high-performance columns. All proton nuclear magnetic reso-
nance (*H NMR) spectra, all carbon nuclear magnetic resonance
(*3C NMR) spectra, and all fluorine nuclear magnetic resonance
(*°F NMR) spectra were recorded with Agilent MR-400 MHz or
Bruker Avance NEO 500 MHz or Bruker Avance NEO 300 MHz
spectrometers. Chemical shifts were expressed in parts per mil-
lion (6 scale) and were referenced to residual CHCl; (*H: §
7.26 ppm, *C: § 77.16 ppm) and C¢Fs (*°F: 6-163 ppm). NMR
data are presented as follows: chemical shift (5), multiplicity (s =
singlet, d = doublet, t = triplet, ¢ = quartet, m = multiplet, dd =
doublet of doublet), coupling constants in Hz, and integration.
Crude '’F NMR yields of all trifluoromethylated compounds
were determined using hexafluorobenzene (PhFs) as an internal
standard. High-resolution mass spectra were recorded on either a
Thermo Scientific Explories 120 Orbitrap mass spectrometer or
an Agilent 7200 GC-MS QTOF mass spectrometer. GC-MS anal-
yses were conducted on an Agilent 8890 GC System with 5977 B
GC/MSD equipped with a HP-5MScapillary column (30 m length,
0.28 mm id, and 0.25 pm film thickness). All AC experiments were
conducted using a function generator (Agilent 33210A) in con-
junction with a modulated power supply (ACCEL Instruments
TS200-0A). Glassy carbon (vitreous) plates (100 X 100 mm) were
purchased from SPI Supplies. DC experiments were carried out
using an IKA ElectraSyn 2.0. The discharge voltage, frequency,
and waveform were monitored using an oscilloscope (SIGLENT
Technologies SDS1202X-E). Voltammetry experiments were car-
ried out using a CHI 650E potentiostat.

4.1.1 | General Procedure for Trifluoromethylchloro-
Sulfonylation of Alkenes via DC and AC Electrolysis

In an oven-dried 10 mL conical Schlenk flask equipped with a
triangular magnetic stir bar, LiClO,4 (53 mg, 0.5 mmol, 2.0 equiv),
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[Cu(MeCN),|PF¢ (18 mg, 20 mol%), Et;N (70 pL, 0.5 mmol,
2.0 equiv), the olefin substrate (0.25 mmol, 1.0 equiv), and anhy-
drous acetonitrile (4 mL) were added under an argon atmo-
sphere. CF3;SO,Cl (160 pL, 1.5 mmol, 6.0 equiv) was then
introduced to the reaction mixture. Two carbon plate electrodes
(3mm in thickness, 1 cm in width, and -10 cm in length) were
then inserted into the reaction flask with an electrode-electrode
separation of -1 mm and immersed -2 cm into the solution. The
electrodes were connected to a waveform generator and amplifier
(see Figure S1). Electrolysis was conducted under one of the
following conditions: constant voltage (2.0, 2.5, or 2.7V), or
AC square wave (amplitude = 2.0 V, frequency = 10 Hz), depend-
ing on the substrate. The mixture was stirred at room tempera-
ture under electrochemical conditions until full consumption of
the olefin substrate was confirmed by TLC. Electrodes were then
removed, and hexafluorobenzene (15 pL, 0.125 mmol, 0.5 equiv)
was added as an internal standard. After 2 min of stirring, an ali-
quot was taken for crude '°’F NMR analysis. The reaction mixture
was diluted with deionized water (5mL) and extracted with
DCM (3 x 15mL). The combined organic extracts were washed
with saturated NaCl solution, dried over Na,SO,, and concen-
trated under reduced pressure. The crude residue was purified
by gradient flash chromatography on silica gel to yield the
desired product.

4.1.2 | Substrate Synthesis, Further Functionalization,
and Control Experiments

Detailed information regarding these methods can be found in
the Supporting Information.
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present in Equations S1-3. Supporting Fig. 2: The Design x,y column is
set as shown (highlighted by the green box). Supporting Fig. 3:
Positioning the crosshair (+) over two markers to obtain their coordi-
nates. a) Positioning the crosshair on the first alignment marker (M0)
and b) on the second alignment marker (MI). Supporting Fig. 4:
Schematic drawing of the print cell used when printing with the hydro-
gels. Two pieces of single-sided tape act as spacers for confining the
hydrogel photoresist. Supporting Fig. 5: Schematic of the alignment
accuracy calculation. a) Multi-point tool (green) and elliptical tool
(red) from Imagel. b) Center of the alignment marker identification.
c) Coordinates corresponding to the four alignment marker centers
(selected points, +) and calculated center of the square (dot).
d) Second print center circle (red dot) coordinates. Supporting
Tablel: Descriptions of variables present in equations S1-3 along with
their units. Supporting Table 2: Composition of the acrylic acid-based
hydrogel photoresist. Supporting Table 3: Composition of the phenyl-
boronic acid-based hydrogel photoresist.
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